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Abstract

Closed form expressions for the maximum likelihood estimates �MLE� of the parameters

in a multivariate normal distribution in which the variances are homogeneous and the corre�

lations are equal is well�known� However� when the correlations are equal but the variances

are not homogeneous� no closed�form expressions are available� We provide two iterative

procedures that converge rapidly� One procedure uses an extension of a well�known scaling

method� which is itself of intrinsic interest�
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�� Introduction

With the underlying assumption of a multivariate normal distribution� the intraclass covari�

ance matrix 
 � ��ij�� with homogeneous variances ���� � � � � � ��pp � �� and homogeneous

correlations �ij � � has been used to model phenomena that are permutation invariant� as

for example� in the case of p equivalent psychological tests� It was �rst studied by Wilks

��
��� and extended by Votaw ��
��� to a more general model in which there is permuta�

tion invariance within blocks� Other multivariate extensions of the intraclass model have

been considered by Olkin ��
���� and estimates of the parameters by methods other than

maximum likelihood estimates �MLE� have been obtained �see for example� Rothblum and

Schneider ��
�
���

In some applications the variances may di�er� yet the correlations remain homogeneous�

This modi�cation has a profound e�ect on the maximization procedures� Whereas for a

normal sample the MLE of �� and � in the intraclass model are expressible in closed form�

this is no longer the case when the variances are unequal� This paper provides an examination

of two new numerical procedures for obtaining maximum likelihood estimates in the unequal

variance case� One of the procedures requires an extension of a scaling theorem that has

some intrinsic interest�

To set forth our notation� let the n rows of

X �

�����
x�� � � � x�p
��� � � �

���

xn� � � � xnp

����� �



denote independent observations from a p�dimensional random variable having a normal

distribution with mean vector zero and covariance matrix 
� Then S � �XX �� is the cross�

product matrix having a Wishart distribution W�
� p� n� with density function

f�S� � c�j
j�n��jSj�n�p����� exp
�
��

�
tr S
��

�
� S � ��
 � �������

where c� is a normalizing constant� and A � � means that the matrix A is positive de�nite�

When 
 is the intraclass covariance matrix


I � ��P � ��

���������

� � � � � �

� �
� � �

���
���

� � � � � � �

� � � � � �

��������� � ����p� �� � � � �� � � �������

the MLE of �� and � are well�known �Wilks� �
����

��� �
tr V

p
� �� �

eV e� � tr V

�p� �� tr V
������

where e � ��� � � � � ��� V � S�n�

When the variances are unequal� we denote the covariance matrix by


IV � D�PD�� D� � diag���� � � � � �p�������

where the designation IV refers to an intraclass correlation matrix coupled with unequal

variances� Because 
�� occurs in ������ we let D��
� � D� � diag���� � � � � �p�� Denote the

Hadamard or Schur product by A �B � �aijbij��

�� An iterative ML Method

To motivate the iterative procedure� rewrite ����� when 
 � 
IV given by ������

f�S� � c�S��
pY

i��

�ni �jP j�n�� exp��

�

h
tr SD�P

��D�

i
������

where c�S� � c�jSj�n�p������ Let Q � �V � P���� Then ����� can be rewritten as

�f�S��
�

n � �c�S��
�

n �
pY

i��

�i�jP j���� exp��

�
��
�
Q� �

�
�������



where �
�
� ���� � � � � �p��

To obtain the MLE of 
IV � we need to resolve the maximization problem

max
�� �
�

�
pY

i��

�i�jP j���� exp��

�
��
�
Q� �

�
�������

noting that Q is a function of �� Our procedure is to �rst maximize with respect to �
�
using

a �xed �� then maximize with respect to � using a �xed �
�
� and iterate� Maximizing �����

with respect to �
�
��i � �� i � �� � � � � p� is equivalent to maximizing

pX
i��

log �i � �

�
�
�
Q� �

�
� �

�
� �������

which is a strictly concave function of �
�
� The �rst derivative equation is�

�

��
� � � � �

�

�p

	
� ���� � � � � �p�Q����	�

which can be written as eD��
� � eD�Q� or as e � eD�QD� �

This problem can also be posed as maximizing a convex function subject to a constraint�

max
x

x Q x� subject to
Y

xi � �� xi � ��

or more conveniently� subject to
P
logxi � �� xi � ��

The solution to ���	� is the solution to a particular scaling result of Sinkhorn��
����

namely� given a positive de�nite matrix Q� there exists a diagonal matrix D� with positive

diagonal elements such that D�QD� is doubly stochastic� This problem has a considerable

history� see for example� Marshall and Olkin ��
���� In particular� there are numerical

procedures for solving ���	� or for �nding the maximum in ������

Thus� given �� which means that Q is given� we can determine the maximizing vector �
�
�

Now consider the density ����� in terms of �� Note that

P�� � aI � bee�� a � ����� ��� b � ������� ���� � �p� �����������

Furthermore� a� pb � �� � �p� ������� and jP j�� � ap���a� pb�� In ����� let U � D�V D� �

so that the maximization with respect to � becomes

max
�

jP j���� exp��

�
� tr UP��� �

max
�

�ap���a� pb����� exp��

�
�u��a � b� � u�b�������



where u� �
P
uii� u� �

P
i��j uij� Taking logarithms in ������ the �rst derivative equation

becomes
p� �

�� �
� p� �

� � �p� ���
� u��

�a

��
�

�b

��
�� u�

�b

��
� �������

where
�a

��
�

�

��� ���
�

�b

��
�

��� � �p� �����

��� ����� � �p� �����
�

Equation ����� is a cubic equation� which can readily be solved numerically to obtain the

maximizer�

Thus� we have that given � we can solve for �
�
and vice versa� This suggests the following

algorithm�

Algorithm ��

Step �� Choose an admissible ��� For example� choose �� to be the solution

under the intraclass covariance model�

Step �� Use ���	� with �� to obtain � �� Note that Q � �qij�� where qii �

vii�a� b�� qij � vij� i �� j� and a and b are de�ned in terms of �� in

������

Step �� Using the updated � � and ����� �nd ��� Note that u� and u� are

de�ned in terms of � ��

Step �� Iterate until the process converges�

In this process� each iteration consists of the solution of a Sinkhorn scaling problem �in

Step �� and the computation of the roots of a cubic equation �in Step ���

�� An Alternative Iterative ML Method

By a reparameterization we can take advantage of the fact that the MLE for the intraclass

covariance model can be obtained explicitly� We �rst review the ingredients needed later�

Rewrite the model ����� as


IV � D�PD� � D�
ID�������



where D� � diag��� ��� � � � � �p� � diag��� ��
��
� � � � � �p

��
� and 
I � ���P � For simplicity we write

�� for ����

Recall that the characteristic roots of 
I are 	 � ���� � �p� ���� and 
 � ����� �� of

multiplicity p� �� Consequently�

j
IV j � �
pY
�

��i � 	

p��������

Then ����� becomes

�f�S����n � �c�S����n�
pY
�

�i� �	

p������� exp��

�
� tr V D��

� 
��
I D��

� �������

Further� any orthogonal matrix G with �rst row e�
p
p diagonalizes 
I � that is� for any such

orthogonal G� G
IG
� � D � diag�	� 
� � � � � 
�� Consequently� with W � D��

� V D��
� �

tr W
��
I � tr �GWG���G
��

I G�������

� tr fWD�� �
ew��

	
�

Pp
� ewii



�

where fW � GWG�� Thus� under the intraclass correlation model� a direct computation

using the result ����� yields the MLE�

�	 � ����� � �p� ����� �
efWe�

p
� �
 � ������ ��� �

p trfW � efWe�

p�p� ��
����	�

from which

��� �
�	 � �p� �� �


p
�

trfW
p

������

�� �
�	� �


�	 � �p� �� �

�

efWe� � trfW
�p� ��trfW �

We can now make use of ���	� in the more general model� From ����� using ����� and ������

�f�S����n � c�S���n


�

pY
�

��i � 	

p��

�����
exp

�
��

�
trV D��

� G��G
��
I G��GD��

�

�
�

� c�S���n


�

pY
�

��i � 	

p��

�����
exp

�
��

�
tr�GD��

� V D��
� G��D��

�
������



where D � diag�	� 
� � � � � 
�� For �xed �� let fW � GD��
� V D��

� G� in which case �����

becomes

�f�S����n � c�S���n


�

pY
�

��i � 	

p��

�����
exp��

�
� tr fWD����

so that �	 and �
 are given by ���	�� Recall that

tr D��
� V D��

� H � ��� �
�
� T ��� �

�
��� �

�
� ���� � � � � �p��

where �i � ���i� i � �� � � � � p� and T � V � H� Consequently� for �xed 	 and 
� and

H � G�D��G we need to maximize

pX
�

log �i � �

�
��� �

�
�T ��� �

�
��������

If we partition the matrix T such that

T �

�� t�� t
�

t�
�

eT
�� �

where t
�
� �t��� � � � � t�p�� then ����� becomes

pX
�

log �i � �

�
�t�� � ��

�
t�
�
� �

�
eT� �
�
�����
�

The �rst derivative equation of ���
� is�
�

��
� � � � �

�

�p

	
� t

�
� �

�
eT �������

When t
�
� �� ������ reduces to ���	�� which is the Sinkhorn problem� The essence of the

maximization has not changed in that �x� a� Q �x� a�� is a convex function of x� Thus we

need to determine

max
x

�x� a� Q �x� a��� a an arbitrary vector�

subject to
Q
xi � �� xi � �� or to

P
logxi � �� xi � � which is a convex constraint� This

leads to an alternative algorithm�

Algorithm ��



Step �� Choose admissible initial values 	� and 
�� for example� 	� � 
� � ��

Step �� Solve for ��
�

by either ���
� or �������

Step �� Using ��
�

and ���	� compute a new 	� and 
��

Step �� Iterate until the process converges�

�� Numerical Results

To test out the new algorithms we ran several numerical experiments on some model prob�

lems� All computer runs were made on an SGI Indigo workstation in double precision

arithmetic� As a benchmark� we used the nonlinear optimization package NPSOL developed

by Gill� Murray� Saunders� and Wright ��
����

We were particularly interested in the e�ects of the dimension of the problem and the

value of the correlation coe�cient� We constructed a model problem by computing a cross

product matrix from a set of random variables generated from a normal distribution with

mean zero and a p� p covariance matrix given by


IV � D�PD�� D� � diag���� � � � � �p�� P � ��� ��I � �ee��

where D� � diag�
p
����

p
��	�

p
����

p
����

p
����

p
���� � � � �

p
����� and � � ���� ��
� For each

value of �� we ran four test problems with p � 	� ��� 	�� ���� The number of observations� n�

was set equal to ��p�

For the method NPSOL� the convergence tolerance was set to ������ which according to

the user�s guide is a rough approximation to the number of correct �gures desired in the

objective function at the solution� For the new algorithms� the methods were terminated if

any of the following three conditions were met�

jjgk��jj � ������ � jfk��j�������

jjxk�� � xkjj � ����jjxk��jj������

jjfk�� � fkjj � ������ � jfk��j�������



where fk and gk are the function and gradient values respectively at the k�th iteration�

Condition ����� is the most satisfactory termination criteria in that the gradient will

be approximately zero� The other two conditions are necessary to keep the algorithms

from taking too many iterations in regions where insu�cient progress is being made� The

tolerances were chosen to correspond approximately with those used by NPSOL�

The results from using NPSOL on the test problems are displayed in Table ���� The table

contains the value of the likelihood function and the norm of the gradient at the solution in

columns ���� In addition� the number of iterations� the total number of function evaluations

and the total cpu time taken are shown as a way of comparing the relative e�ciency of the

various algorithms� Tables ������� contain the numerical results from algorithms � and �

respectively�

Table ���� NPSOL

p � f�x�� jjg�x��jj Iter�Feval� Cpu time

	 ��� ����� ���� ���	 ����
� ���	

�� ��� ��
�� ���� ���� ����
� ���


	� ��� �����
 ��	� ���� �	�	�� ����

��� ��� ������ ���
 ���� ���	�� ����

	 ��
 ����
 ��

 ���	 ������ ���	

�� ��
 �	���� 
��� ���	 ������ ����

	� ��
 ������� ���� ���
 ������ ����

��� ��
 ��	���� ���� ���
 �	����� 	���

Our �rst observation is that all of the methods return the same likelihood value in every

test case� We also note that in most cases� both of the new algorithms yield a solution with

fewer function evaluations �as well as faster execution times� than NPSOL� Algorithm � also

gives solutions that have roughly the same amount of accuracy as the solutions returned



Table ���� Algorithm �

p � f jjgjj Iter�Feval� Cpu time

	 ��� ����� ��
� ���� ����� ����

�� ��� ��
�� ��
� ���
 ����� ����

	� ��� �����
 	��� ���
 ����� ����

��� ��� ������ 	��� ���
 ���
� ���


	 ��
 ����
 ���
 ���� ������ ���	

�� ��
 �	���� ���
 ���
 ������ ���


	� ��
 ������� ���	 ���
 ����
� ��
�

��� ��
 ��	���� ���� ���
 ����
� ����

Table ���� Algorithm �

p � f jjgjj Iter�Feval� Cpu time

	 ��� ����� ���� ���� 
���� ����

�� ��� ��
�� 
�
	 ���� ����� ����

	� ��� �����
 ���� ���
 ����� ��
	

��� ��� ������ ���� ���
 ���
� ���


	 ��
 ����
 	��� ���� ����� ����

�� ��
 �	���� ���
 ���
 
���� ����

	� ��
 ������� ���� ���
 ����	� ���	

��� ��
 ��	���� ���� ���
 ������ ����



from NPSOL as measured by the norm of the gradients� The second algorithm is as e�cient

as the �rst algorithm but always returned a solution with a larger gradient�

An interesting point is that the dimension of the problem did not a�ect the convergence

of either of the new algorithms� In all cases� the number of iterations was between ��

�� iterations� In contrast� the number of iterations required by NPSOL grows with the

dimension of the problem� The number of iterations required by NPSOL also increased as

the value of the correlation coe�cient was increased� In the largest dimensional problem the

number of function evaluations required almost doubled� The two new algorithms were not

substantially a�ected by the larger correlation coe�cient�

A �nal point concerns the choice of the initial guess for the two new algorithms� Although

there are clear choices in each case �for example the solution under the intraclass covariance

model for Algorithm ��� we also tested the algorithms over a wide range of initial guesses� In

particular� for Algorithm � we also conducted tests using an initial guess for � close to both

����p � �� and �� which constitutes the extreme values for this parameter� For Algorithm

�� the extreme case consists of choosing 	 � 
 � �� In all the numerical tests using these

initial guesses both algorithms converged� Interestingly enough� in some cases the algorithms

converged in a fewer number of iterations than the cases displayed in Tables �������� although

on the average the use of extreme values for the initial guess caused both algorithms to take

a larger number of iterations�

�� Conclusions

We have presented two new algorithms for the computation of maximum likelihood estima�

tors in the case of multivariate normal distributions where the correlations are equal but

the variances are not homogeneous� The �rst algorithm involves the solution of a Sinkhorn

scaling problem in conjunction with the solution of a cubic equation� The second algorithm

only requires the solution of an extended Sinkhorn problem which is of intrinsic interest�

Both new algorithms compare favorably with standard nonlinear programming techniques�

In addition� the new algorithms have the advantage of being fairly insensitive to the dimen�



sion of the problem and to the correlation coe�cient� These two characteristics make the

new algorithms more attractive for large dimensional problems�
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